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Physical property-porosity models based on minimum solid areas of idealized stackings of 
either: (1) spherical particles partially bonded (e.g. sintered), or (2) spherical pores in a solid 
matrix are shown to agree with appropriate physical property data for bodies whose 
porosity is reasonably represented by such stackings. Appropriate physical properties are 
those determined mainly by local stress or flux, e.g. elastic properties, strengths, and 
electrical and thermal conductivity. The minimum solid areas are, respectively, the: (1) bond 
(e.g. neck) area between particles defining pores smaller than the particles, or (2) minimum 
web thickness between adjacent pores being more than or equal to the surrounding particles 
(e.g. bubbles in a foam). Combinations of the models for mixtures of basic porosity types 
and changes in basic model parameters (e.g. stacking) over the significant porosity range 
covered, are shown to agree with the literature (mainly mechanical) property data for bodies 
of appropriate porosity combinations. Areas of further development and testing are noted. 

1. Introduct ion 
1.1. Background 
Porosity is a pervasive and important microstructural 
factor in all materials because of its common, but 
variable, occurrence with variable and often signifi- 
cant effect on properties. Despite the obvious 
importance of porosity, much is still not well known, 
including a clear recognition and identification of 
which properties depend on which porosity para- 
meters. Thus, there are some properties that have 
little, or no, dependence on porosity, mainly those 
determined primarily, or only, by the atoms present, 
their local bonding, or both. These include molecular 
weight and lattice parameter, with thermal expansion 
being an important macroscopic manifestation of the 
porosity independence of the latter. There are also 
some properties that depend primarily, or only, on the 
amount of porosity, i.e. the volume fraction porosity, 
P, i.e. they satisfy a rule of mixtures of the pore and 
solid phases. These are primarily properties that de- 
pend on the composition and mainly, or only, on the 
amount of mass present, because the volume fraction 
mass is simply 1-P. Such properties include heat capa- 
city, and dielectric constant and refractive index (pro- 
vided special scattering or charging effects do not 
occur). However, most physical properties depend on 
both the amount of porosity and one or more aspects 
of the pore character. Defining and adequately 
measuring which other pore aspects are pertinent to 
various properties has been a major challenge in ad- 
equately defining, and hence predicting, the porosity 
dependence of many important physical properties. 
Properties that typically have such more complex 

dependence on porosity include mechanical properties 
and electrical and thermal conductivities. 

The lack of predictive ability reflects the challenge 
of adequately addressing porosity-property relations, 
especially identifying those properties that depend on 
more than just P, and what the specifics of the addi- 
tional porosity dependence are. Meeting this challenge 
requires simplification of the problem, but in a fashion 
that does not seriously distort or obscure the physical 
information being sought. Two approaches to model- 
ling, and hence understanding, porosity dependence 
have been dominant for the very important area of 
mechanical properties. These are: (1) models based on 
pertinant cross-sectional geometries (discussed in Sec- 
tion 1.2, and the subject of this paper), and (2) micro- 
mechanics-based models. Particular attention in the 
latter has been focused on elastic properties [1-6], but 
such models have often been generalized to properties 
other than those for which they were derived. Thus, 
models based on specific elastic properties are often 
applied to other elastic properties, as well as strength 
(tensile and compressive) [4] and occasionally non- 
mechanical behaviour such as electrical and thermal 
conductivity [7]. 

As an illustration of some of the problems with such 
modelling, consider one of the most widely used mi- 
cromechanics approaches [5]. This assumes that por- 
ous bodies conceptually be represented as being built 
up by packing of hollow spherical particles of an 
infinite range of sizes. The size of each particle and its 
central, spherical cavity or bubble are chosen so each 
particle has the same P as the resultant body to be 
modelled. The infinite size range is needed so that 
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smaller particles (of the same P) can fill all the intersti- 
ces between larger particles, so there is no porosity in 
the body other than that from the central cavity in 
each particle. It is then assumed that the conceptual 
application of a hydrostatic pressure is uniformly felt 
by all particles so the resultant strain response can be 
calculated. A common approach to improving the 
agreement between these (and other) models is to let 
some parameter such as Poission's ratio be dependent 
on porosity, often in a physically questionable 
fashion, i.e. using it more as an adjustable parameter 
[5]. There are various questions about such models, 
including the extent to which stress concentrations 
play a role in porous materials, especially for elastic 
properties [8, 9]. However, of greatest concern for this 
modelling approach (and many other earlier models) 
is the neglect of the diversity of pore character by 
using a single type of pore to represent universally all 
pores. Generalization of the pores to spheroids [1, 2] 
does not help much because this still fails realistically 
to reflect many important pore types, as well as their 
combination, change, and variability discussed below. 

Another reason for the lack of a predictive poros- 
i ty-property ability is that all models have assumed 
a single type of porosity that remains fixed in basic 
character over the range of its applicability [1 7]. 
Thus, models assume that spherical pores remain 
spherical and that for pores between packed particles, 
which are determined by the packing, (i.e. stacking) of 
the particles retain the same stacking. Neither 
assumption of a single type of, nor a static, porosity is 
completely valid. Many porous bodies are much 
better approximated by a mixture of two or more 
idealized pore structures than a single one. An impor- 
tant combination is of the two basic types of porosity, 
i.e. of pores within and between particles, e.g. bodies 
made of hollow spheres. This is necessary because the 
only way to achieve />50% porosity in a body of 
particles is to introduce some pores larger than those 
occurring between regularly stacked particles (because 
such porosity is inherently < 52% in such structures). 
Even if one starts with a single idealized pore structure 
it will often change, for example, because particle 
stackings are generally not static as porosity changes, 
e.g. due to sintering. Thus, both cubic and orthorhom- 
bic particle stackings are unstable because they 
represent, respectively, the lowest and an intermediate 
stability of sphere location and of packing density 
[10]. For sintering solid particles, variations in size, 
deviations from spherical shape, multi-sphere stresses, 
or combinations of these can allow at least local shifts 
from cubic to orthorhombic or rhombic and from 
orthorhombic to rhombic stacking (i.e. lower particle 
stackings with lower coordination numbers, C,, will 
be progressively less stable and, hence, more suscep- 
tible to rearrangements to increase Ca). Such increases 
in particle coordination numbers are basic to sinter- 
ing, because green densities commonly imply particle 
Cn ~6-8,  while grains in dense bodies typically have 
Cn ~12-14. Accounting for such changes again re- 
quires combining various models, but with the combi- 
nations changing with P. Many of these changes occur 
mainly at moderate to low porosity (e.g. < 10-20% P) 

where their effects are limited. However, typically, 
pore stacking changes similar to particle stacking cha- 
nges will occur, accompanied by pore shape changes 
at higher porosity levels, e.g. in foams, which can be 
more significant. Thus, surface tension commonly 
leads to some distortions of nominally spherical pores 
towards cylindrical pores (whose extensive intersec- 
tion gives nearly cubic pores, e.g. as approximated in 
Fig. 2, see below) as P increases. Such progressive 
changes from spherical to cylindrical pore models 
need to be considered at high porosities. Thus, both 
common initial mixes of, and changes in, porosity 
make modelling of combined pore structures 
important. 

A compounding problem in property-porosity 
studies is that the characterization of porosity, beyond 
an average P, is generally limited, or more commonly 
non-existent. While detailed porosity characterization 
is quite challenging, rudimentary characterization is 
limited, as is even basic processing information which 
may indicate some aspects of the porosity. However, 
some studies have been conducted where bodies with 
nearly ideal pore structures have been fabricated and 
some properties measured as a function of their level 
of porosity. 

This paper is one of two papers directed toward 
a predictive capability for porosity-dependent proper- 
ties depending on pore character. Both papers are 
based upon selection from, and combining of, a series 
of existing models based on the minimum solid area 
concept (discussed in Section 1.2). This paper summar- 
izes these existing models based on a range of idealized 
pore structures and introduces their combination. 
Then literature data for porous bodies approximating 
these models are shown to be consistent with the 
corresponding model or combination of models. The 
companion paper [-11] shows literature data for 
bodies having normal, i.e. non-idealized, porosity also 
to be consistent with these single or combined models 
for appropriate properties. 

1.2. M i n i m u m  solid area models 
Almost all pore structures can be obtained by (1) 
varying degrees of bonding (commonly by sintering) of 
various particles and packings defining and surround- 
ing smaller pores, (2) using bubbles or fugitive par- 
ticles to form solid webs or struts totally or partially 
enclosing each resultant pore (i.e. interchanging the 
pore and solid phases in case 1, or (3) combinations of 
these. Thus, reasonable idealizations of much porosity 
for modelling are regular stackings of identical spheri- 
cal particles or bubbles. This translates into stacking 
of (whole or truncated) spheres contained within regu- 
lar polyhedral, often cubical, cells (Figs 1 and 2). The 
limit of regularly stacked spherical particles is point 
contact with the containing polyhedra and each other, 
because, for a body to be a solid, it must have sphere- 
to-sphere contact. This typically limits such models 

50% porosity. Sphere sintering or bubble growth is 
accompanied by growth of the contact areas (which 
are usually at or near the poles and near or along the 
equator), and sphere truncation and accompanying 
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Figure 1 Idealized stackings of uniform solid spheres (or bubbles) in (a) cubic, (b) orthorhombic and (c) rhombic arrays. Note the circular or 
elliptical (due to perspective) area reflecting the minimum solid (bond) area for solid spheres (or degree of intersection of bubbles), and the 
resultant grain shape at full density for sintered spheres (the projected cell above the array), giving, respectively, (a) a cube, (b) hexagon and (c) 
dodecahedron. 
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(c) 

Figure 1 continued 

shrinkage of both the polyhedra (whose sides always 
include the bond areas), and the body such that the 
volume of each resultant truncated sphere always 
equals the starting volume (i.e. conserving mass). The 
case of stacked bubbles, which is, in many respects, 
a mirror image of stacked spherical particles, can 
extend essentially over the full range of porosity, from 
zero through closed porosity to reticulated foams. 

Many of the models for the porosity dependence of 
physical properties of ceramics and other materials 
have been derived using the above idealized structures 
to calculate actual solid cross-sectional areas. Typi- 
cally the fraction of the zero porosity property values 
as a function of the volume fraction porosity, P, is 
equated to either the average or, more commonly, the 
minimum, fraction of solid area [6, 11-16] of the total 
body area normal to a reference (e.g. stress) axis. 
Minimum solid areas for stacked particles are the 
bond areas between them; for stacked bubbles the 
minimal solid areas are the minimal web cross-sec- 
tional areas between pores (Figs 1 and 2). Use of the 
average solid area is clearly logical for properties 
determined by a rule of mixtures of the properties of 
the solid and porosity (e.g. heat capacity), because the 
average area fraction of each phase equals its average 
volume fraction. An area basis is also logical for prop- 
erties based on stress (i.e. elastic and strength behaviour), 
and flux (e.g. thermal and electrical conductivity) be- 
cause these clearly also depend on the solid area. 
However, in these cases, the minimum, rather than the 
average, fractional solid area is more logically the 

controlling factor and has been most commonly used 
[-6,11-15]. The concept is that the minimum solid 
area normal to the stress (or conductive flux) should 
dominate the transmission of stress (i.e. strain, fracture 
toughness or energy, or strength) or conductive (ther- 
mal or electrical) fluxes through a body (e.g. Fig. 3). In 
a few special cases, the average and minimal solid 
cross-sectional areas are equal, e.g. for any type of 
long, parallel cylindrical or prismatic pores with the 
stress or flux parallel to the pore axis. Pore 
shape stress concentration effects have also been used 
as a basis for mechanical property-porosi ty  models 
[-1, 6]. However, (1) the applicability of stress concen- 
tration effects to such porosity dependence has been 
questioned [8, 9], (2) minimum solid area has been 
shown to be more accurately correlated with proper- 
ties than an accepted stress concentration model [8], 
and (3) interaction of pores reduces their stress con- 
centrations, leaving the minimum solid areas as the 
main carrier of stress. Minimum solid area has also 
recently been shown to be the additional porosity 
parameter beyond the volume fraction (or per cent) 
porosity to characterize properties of porous solids 
which are not a simple rule of mixture of the amount 
of solid and porosity (e.g. of properties based on stress 
or flux) 1-10]. 

Minimum solid area models (though not necessarily 
labelled as such) have seen considerable development 
and use over the years for various individual pore 
structures, usually for mechanical properties. Thus, 
such models were developed for uniform spherical 
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Figure 2 Idealized stackings of uniform foam cells, i.e. a much more extreme case of bubble intersections of Fig. 1 in the same stackings, i.e. (a) 
cubic, (b) orthorhombic and (c) rhombic. For simplicity of illustration, an approximately cubic void structure is used, when in reality, surface 
tension will increasingly determine the structure (see text), e.g. giving a pore shape close to something between first a truncated sphere and 
then a truncated cylinder as porosity increases. The minimum solid area is the web cross-section, which in reality will typically be tapered, 
usually to a minimum near its centre, due to surface tension. 

pores [13], then cubical pores (stressed, normal  to one 
set of  cube faces [14-1, and subsequently for other  
or ientat ions [6, 16]), solid spherical particles [12] (of 
simple cubic, o r thorhombic ,  and rhombic  stacking), 
and  aligned cylindrical pores  [ 15] (stressed parallel or  
perpendicular  to the pore  axis). Current ly  used models  
for various foam structures [17]) are essentially 
specialized m i n i m u m  solid area  models  (using ideal 
structures like those of  Fig. 2). Thus,  they assume 
mechanical  propert ies  are determined by the proper-  
ties and dimensions of  the struts or  webs between the 
pores  ra ther  than  the thicker cross-sections, i.e. at  the 
junct ions  of two or more  webs or struts, which also 
neglects stress concentra t ions  at such junctions.  The  
solid spherical particle models  were shown to be 
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approx ima ted  over  much  of their lower P range by the 
exponential  relat ion (e -bP) with a given b value (i.e. 
slope of the initial approx imate ly  linear decrease on 
a semi-log plot, Fig. 4) cor responding to a given par-  
ticle stacking, and hence pore  s tructure [10]. This  
provided some theoretical  justif ication for this ex- 
ponent ia l  relation over  its previously purely empirical  
use. Subsequently,  all of the other  above-no ted  min-  
i m u m  solid area models  for o ther  pore  structures were 
shown to be similarly app rox ima ted  by the exponen-  
tial relation with b values, again  cor responding  to 
a given pore  structure [6, 16], thus broadening  the 
analytical  basis for using the exponent ia l  relation. 
Also, the available collection of pore  structures 
f rom m i n i m u m  solid area models  was shown to cover  
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Figure 2 continued 
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Figure 3 Schematic illustration of the minimum solid area concept. 
(a) The cross-section of a dense, uniform body where the transmis- 
sion from layer to layer, normal to a uniform stress or conductive 
flux (e.g. electron or phonon), is the same in every layer; (b) the 
cross-section of a body identical to that in (a) except it has most of 
a layer removed, leaving only three small areas of continuity which 
now dominate the transmission of stress or conductive fluxes nor- 
mal to the plane of the slab. Clearly, the average cross-sectional area 
is not a good indicator of the stress or flux transmission of this body; 
the limited contact areas, i.e. the minimum solid areas, are good 
indicators. (c), (d) cross-sections or particles or bubbles, respectively, 
where again the minimum areas of the solid cross-sections between 
pores (cross-hatched) will dominate stress or conductive flux trans- 
mission normal to the plane of the slab. Note horizontal dashed 
lines indicating basic, repeat cell structure of the bodies and desig- 
nated minimum sold areas (MSA). 

a suff ic ient  r ange  to m o d e l  mos t ,  if  n o t  all, real  p o r e  

s t ruc tu res  [16].  Thus ,  m i n i m u m  sol id  a r e a  m o d e l s  a re  

a p p l i c a b l e  to  a n u m b e r  of  i m p o r t a n t  phys i ca l  p r o p e r -  

ties, a n d  h a v e  the  i m p o r t a n t  a d v a n t a g e s  o f  c o v e r i n g  

the  en t i re  P r ange  and  are  effect ive (poss ib ly  un ique)  in 

a l l o w i n g  the  d ive r s i ty  o f  p o r e  s t ruc tu res  to be 

addressed .  

T h e  m i n i m u m  sol id  a r e a  m o d e l s  t ha t  a re  p e r t i n e n t  

to  this p a p e r  are  s h o w n  in Fig.  4. B e y o n d  the  ini t ial ,  

a p p r o x i m a t e l y  l inear  dec rease  of  the  m i n i m u m  sol id  
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Figure 4 Models from the literature showing calculated ratios of 
minimum bond area per cell to the cell cross-section for the three 
basic sphere stackings (per Knudsen [12] ), and for cubic stacking of 
spherical and cylindrical voids for stress or flux parallel or perpen- 
dicular (see arrow-cylinder sketches) to the axes of the aligned 
cylinders [15]. Note that the original plotting of the model for 
properties perpendicular to the axis of aligned cylindrical pores was 
significantly in error giving b or 7 and Pc or 0.2 [6, 15] in contrast to 
correct value of a 3 and 0.8 respectively, as shown. Note the rule of 
mixture combinations ( Q for (a) 75% rhombically and 25% 
cubically stacked spherical particles, (b) 50 50 mixture of cubically 
stacked particles and bubbles (i.e. of hollow spheres), and (c) 50 50 
mixture of cubic stacked spherical and cylindrical voids. For refer- 
ence, slopes (i.e. b values ofe -bp) are shown as integer values of 1-9. 

a r e a  (and hence  the  p r o p e r t y  va lue  of  in teres t )  on  

a s emi - log  p lo t  versus  P,  the  p r o p e r t y  o f  in te res t  s tar ts  

dec reas ing  m o r e  rapid ly ,  t hen  nea r ly  p rec ip i tous ly ,  

go ing  to ze ro  at  a cr i t ica l  poros i ty ,  Pc. F o r  s t a cked  

par t i c les  Pc, the  p e r c o l a t i o n  l imit ,  is whe re  the  b o n d  

a rea  b e t w e e n  par t ic les  goes  to  zero.  F o r  po re s  (e.g. 

bubbles )  in a ma t r ix ,  it is the  p o i n t  at  wh ich  the  

m i n i m u m  w e b  a reas  b e t w e e n  par t i c les  goes  to zero.  

Thus ,  each  specif ic  m o d e l  has  th ree  charac te r i s t ics :  (1) 

the  a p p r o x i m a t e l y  l inear  s lope  o f  the  first ha l f  to  th ree-  

q u a r t e r s  o f  the  P r ange  to w h i c h  it is app l icab le ,  (2) the  
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approximate P value at which properties start to de- 
crease significantly more rapidly than the approxim- 
ate linear slope, and (3) the Pc value. All three of these 
are useful in distinguishing the basic porosity charac- 
ter of each model, but their utility varies. Thus, 
Pc values are experimentally the least available, may 
be the most accurately defined theoretically and are 
not unique, e.g. they are the same for spheroidal and 
polyhedral pores having the same cross-sections as 
tubular pores of the same cross-section aligned para- 
llel to the direction of property measurement. The 
approximate linear slopes are unique for basic models, 
and are the most widely available factor, giving con- 
siderable emphasis to them. The utility of each of the 
above three characteristics is further enhanced by 
combinations of different porosity, resulting in similar 
curves with the above three characteristic values 
given approximately by a weighted average of those 
for each type of porosity involved, as shown later 
(Fig. 4). 

In addition to the above three characteristics of 
minimum solid area models to check them, they offer 
other opportunities for evaluating their applicability. 
As noted earlier, their minimum solid areas basis 
makes them applicable to not only stress determined 
(i.e. mechanical) properties, but also flux-determined 
properties, e.g. thermal and electrical conductivities. 
Thus, both mechanical properties and thermal and 
electrical conductivities as functions of P are evalu- 
ated as tests of the models. Another important test of 
them is their applicability to different materials, espe- 
cially for mechanical properties. Thus, the assumption 
of these models is that mechanical properties are prim- 
arily determined by the minimum solid areas. This 
means that other aspects of pore shape that may effect 
factors such as stress concentrations not necessarily 
fully reflected in the minimum solid area are not 
dominant. Comparison of mechanical property por- 
osity behaviour of ceramics versus polymer and met- 
als should thus be instructive because the typical 
absence of plastic deformation in ceramics allows 
them to sustain elastic stress concentrations, while 
plasticity in polymers and especially metals limits 
them. Thus, if stress concentrations are important they 
should result in a broader range of P dependence of 
mechanical properties in ceramics than in plastics, and 
especially metals. While this differentiation should be 
greatest for strength, it can also be applicable to elastic 
properties because, while a plastic or metal may mac- 
roscopically be in the linear elastic range, local stresses 
around pores can still exceed the yield stress. 

It would be most desirable to model each of the 
entire curves in Fig. 4 with a simple equation that 
contains parameters readily relatable to the pore char- 
acter so that one can understand the meaning of these 
parameters for combinations or changes of pore~struc - 
tures. One candidate for doing this is the equation 
proposed by Phani and Niyogi [18] giving the ratio of 
the property at some volume fraction porosity to that 
at zero porosity as 
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where a and M are constants for a given porosity. 
Phani has fitted this equation to the minimum solid 
area model for cubically stacked spherical pores in 
a matrix. Alternatively, one might use the similar 
equation derived by Shiller [19J which gives the prop- 
erty ratio as: 

1 - -  a ( P ~  M (2) 
\PFoJ 

However, initial trials of these and similar combina- 
tions showed difficulty in fitting such equations to the 
various model curves. Thus, while one could obvious- 
ly fit the porosity trends near their percolation limit 
well, this could not always reliably be done and also 
get a good fit to the lower porosity region. Further it is 
not clear that one could clearly associate the equation 
parameters with the porosity character in such model 
fitting. One of the basic problems with these equations 
is that the parameters all interact in one term of the 
equation. Also, while the Pc value would be an impor- 
tant parameter, it is often not available or is uncertain 
because data are often not carried to where the 
minimum solid area (and hence associated properties) 
start decreasing rapidly toward Pc, and even less are 
carried nearly to Pc. 

Another approach is to utilize the approximately 
linear character on the semi-log plot over much of the 
porosity region to which the different individual mod- 
els are applicable. This thus utilizes the commonly 
used exponential relationship where in the ratio of the 
properties at some porosity to that at zero porosity is 
given by 

e - b P  (3) 

where b is a parameter determined by the character of 
the porosity (Fig. 4). This expression has been widely 
used for porosity studies in the past, first on an empiri- 
cal basis, then on an analytical basis for different 
stacking of spherical particles [12] and various shaped 
pores in a matrix [6, 16] (for which other equations 
had been previously derived) [6, 13, 14]. This ex- 
ponential expression has three basic advantages. First, 
it is a reasonable approximation for the actual models 
(prior to beginning the approach to Pc. (The fact that 
this is not an exact approximation is one of the rea- 
sons why some curve fitting may not always reflect it 
as fitting data as well as other models, especially if it is 
extended beyond its range of good applicability.) 
Second, there are extensive data for which the b values 
have already been determined. Third, it provides 
a single parameter, b, which can be correlated with 
pore character (e.g. Fig. 4) and can be readily adapted 
for pore combinations via a weighted average of the 
b values, as shown later. Further, because of this 
mathematical simplicity, it allows ready correlation of 
other properties. Thus, for example, because sound 
velocities are related to the square of the pertinent 
elastic moduli, b values for the velocities will simply be 
about half of that for the corresponding modulus. This 
exponential form, which will be used in this paper, also 
has potential for being combined with the similarly 
derived expression pertinent only for higher porosity 



levels, which has the form [15] 

1 - e - b ' ~  ( 4 )  

This has been shown to have reasonable agreement 
with high P data, but is improved (and more accurate 
theoretically) by substituting P/Pc for P. Combination 
of this equation with 3 to cover the higher and lower 
P ranges would give, respectively, two independent 
parameters (b and b') besides P and Pc for potentially 
more versatile and accurate fitting of data. For the 
present paper, the focus will be on use of Relation 
3 because this applies to most data of this study (and 
most literature data). However, where data cover most 
of the P range of a model, or the higher P range, it is 
compared to the appropriate model curve. Use of 
equation 4 is also illustrated. 

2. Model combinations 
The concept of combining various porosities in a body 
(via a rule of mixtures) was used in considering effects 
of heterogeneous porosity on properties and in evalu- 
ating porosity parameters in bodies with more than 
a single type of porosity [20]. It is also suggested by 
cubic and random stacking of particles yielding sim- 
ilar porosity [16] because the latter must involve some 
lower density (e.g. particle bridging) and higher 
density (e.g. orthorhombic or rhombic) packing to 
give the same porosity as simple cubic packing. How- 
ever, neither broader combinations nor specific, 
quantitative methods of combining models have been 
considered. 

Three methods of combining effects of different por- 
osities are logical. The first is the rule of mixtures, i.e. 

X = V~X1 + V 2 X 2 ,  (5) 

where V1 and V2 are the volume fractions of the two 
porosities (P1 and P2), X~ and Xz the respective 
material properties for these porosities, and X the 
resultant property. Such a rule of mixtures is an upper 
(Voight) limit, for example, for elastic properties (re- 
flecting addition of elastic properties for slabs of two 
different materials stacked parallel to the applied 
stress, i.e. a parallel model). Second is a lower (Reuss) 
bound, for example, based on stressing slabs of two 
different materials stacked perpendicular to their 
plane of stacking (i.e. a series model) 

X I X 2  
X = (6) 

V I X 2  + V 2 X  1 " 

Because the values of any one property at P = 0 are 
the same for X, X1, and X2 these can be replaced by 
the relative values (i.e. the ratio of the property at any 
P to that o fP  = 0) in both of the above equations. The 
third method of combinations is to average the above 
two; i.e. the upper and lower bounds as is commonly 
done for elastic properties. 

Each of the above combination methods has its 
known or potential uses (e.g. as noted above) and its 
uncertainties. The upper bound (rule of mixture) and 
the lower bound, and hence also their combination, 
give very similar values when the values of X1 and 

X2 are similar. The two methods give substantially 
different values of X when the values of X~ and X z  a r e  

far apart, e.g. when X~ ~0, the upper bound gives 
X = V2X2, but the lower bound gives N0. Which is 
closer to the actual value depends on the nature of the 
porosity, but for many such cases, it will be the lower 
bound, because pores often reflect a substantial series 
effect. Averaging the two may often be useful, but does 
not necessarily resolve the issue, because if one type of 
porosity gives N0 properties, averaging it with a lar- 
ger value is valid only if the series and parallel effects 
are approximately equal. 

Examples of some of the basic models and their 
combinations (using Equation 1) are shown in Fig. 4. 
Because these involve combining similar levels of min- 
imum solid area (hence also of pertinent properties) 
there are no significant differences whether the combi- 
nations were made via Equation 1 or 2. Families of 
such curves can thus be generated for various porosity 
combinations. Note that to at least a first approxima- 
tion, such combinations result in a proportional com- 
bination of (1) the limiting porosity, Pc, values, i.e. 
when the contiguity of the body, and hence its proper- 
ties, go to zero, and (2) the nearly linear slopes (b 
values of e -bP) that are a reasonable approximation 
over the first half to three-quarters of the P range of 
the models being combined. Such combinations of 
model curves are thus logical, simple and effective. 
Some combinations of specific porosity will be con- 
sidered. However, the above, more generic approach, 
i.e. using a family of combined model curves based on 
a weighted average of the appropriate basic model 
curves, from which pertinent members can be selected 
for each specific case, is used most extensively. 

3. Comparison of model and 
experimental results 

3.1. Bodies of mainly spherical or 
cylindrical pores in a ma t r i x  

Several sets of experimental results (mainly for mech- 
anical properties) from the literature provide at least 
approximate checks on basic minimum solid area 
models. Hasselman and Fulrath [20] cast glass plates 
with up to 2.5% of essentially spherical bubbles of 
various sizes, giving a decrease of Young's modulus 
from ~79.5(P = 0) to ~75.5 GPa at P = 2.5% and 
similarly from ~33.3 to ~30.5GPa for shear 
modulus. Cubic stacking of uniform spheres (which is 
very similar to random packing) would predict re- 
spective decreases to ~71.5 and ~30.0 GPa, i.e. in 
reasonable agreement, but somewhat greater de- 
creases than observed. Variations in bubble size and 
distribution along with the limited porosity range 
(hence limited data) are probable factors in thelimited 
differences between theory and experiment. 

More definitive is the work of Walsh et al. [21], 
who sintered specimens from glass frit, obtaining 
0%-70% P. Because the porosity was mostly closed, 
surface tension effects would imply that the pores were 
approximately spherical, especially at higher sintering 
temperatures (hence lower P). Their relative Young's 
moduli generally follow the spherical pore in cubic cell 
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Figure 5 Plots of relative Young's modulus (i.e. of the porous body, 
E, divided by that of the dense body, Es) and of fracture toughness 
versus volume fraction porosity, P, for sintered glass powders 
[21, 22] and for foamed glasses [23]. Note dashed lines showing 
fitting by Green [24] of foam-cell models of Gibson and Ashby E17] 
and Gent and Thomas [25] to E/E~ for the foamed glass. E: ([3) 
[21], (�9 [23] survey, ( x ) [23] measured. 

model fairly well (Figs 4 and 5), consistent with ran- 
dom packing yielding very similar densities as cubic 
packing. Some deviation occurs at the highest poro- 
sity (P = 70%), consistent with possible changes from 
spherical toward cylindrical pores. Warren [22], sin- 
tering bodies from a pearlitic glass (with outgassing to 
also yield bubbles), obtained similar results. His rela- 
tive elastic moduli also generally agree with the model 
for randomly stacked bubbles (Fig. 5). Deviation at 
higher P most likely reflects increasing residual poros- 
ity between incompletely sintered particles. Zwissler 
and Adams [23] summarized Young's modulus 
measurements for foamed glasses from various sour- 
ces, and made their own measurements of Young's 
modulus and fracture toughness. Most of these 
measurements fall in between the curves for cubic (and 
hence approximately random) stacking of spherical 
and cylindrical pores, or on the latter, especially at 
higher P (Fig. 5), as expected. Also shown in Fig, 5 is 
the fitting by Green [24] of two foam-cell structure 
models [17, 25] for the relative Young's modulus, 
(E/E~), of the foamed glasses. These data sets show the 
need for, and general agreement with, models covering 
a broad range of P. 

Two cases of introducing spherical pores in poly- 
crystalline bodies by incorporating rubber micro- 
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Figure 7 Flexural strength data of Wallace [28] for AlzO3 with 
mostly approximately spherical pores ((A) 28, (�9 48, or ([Z) 80 pm 
diameter) versus volume fraction porosity, P. Note b values average 
~3 consistent with spherical pores, from Fig. 4. 

spheres are shown in Fig. 6 (lead zirconate titanate) 
[26, 27] and Fig. 7 (A1203) [28]. Both show trends, i.e. 
log strength versus P slopes (b values) of ~3, reason- 
ably consistent with that expected for cubic (hence 
also random) stacking of spherical pores. Somewhat 
higher b values than the spherical pore model are 
reasonable in view of the fact that there is also some 
residual grain-boundary porosity (which has higher 
b values, i.e. Fig. 4). Higher b values probably also 
reflect effects of heterogeneities. Considerable com- 
pressive strength data of glassy carbon [6, 29] where 
porosity should be predominantly spherical, gives 
a b value of 3.3 consistent with the model for spherical 
pores. Similarly, Young's modulus data for cast poly- 
mers with air bubbles [30,31] show an average of 
b ~3 consistent with the model for spherical bubbles 
(Fig. 8). Variations probably reflect heterogeneities in 
the bodies. 

More limited data for non-mechanical properties 
also support the models. Thus, plotting the log of 
thermal conductivity versus P of A1203 [32] at 22 ~ 
(with pores of "roughly spherical' or ellipsoidal" shape 
~0.03 cm-ld iameter )  gives b ,-~1.3 (Fig. 9). This is 

only approximately half the b value expected for 
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Figure 9 Relative thermal conductivity of A120 3 with ( x ) larger, 
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pore axes [32]. 

spherical pores. However, the quoted imperfect 
spherical shape (from expansion of naphthalene flakes 
volatilizing during early stages of firing in slip cast 
cubically shaped specimens) and the resultant b value 

would be consistent with pores approximated by- 
oriented cubes or cylinders [-6, 15]. Conductivity pa- 
rallel with aligned cylindrical pores (~0.082 or 
0.146 cm diameter) in two A1203 bodies each gave 
a b value (i.e. slope) of ,-d.1, i.e. 10%-20% lower but 
generally consistent with the corresponding model 
(Figs 4 and 9). Recognizing that there is also some 
added porosity from sintering, also lowering the con- 
ductivity improves the agreement. However, more im- 
portant was the thick solid periphery around the 
sample (i.e. the cylindrical pore area constituted about 
92%-94% of the specimen lateral dimensions). Thus, 
for testing parallel with the material around the cylin- 
drical pores, there are four surface slabs of nominal 
sintered porosity (e.g. ~5%) conducting in parallel 
with the material with the cylindrical pores. Using the 
rule of mixtures (Equation 1) for these two porous 
materials for the highest porosity measurement 
(P = 20%) gives a limited (e.g. ~10%) increase in the 
relative thermal conductivity from that of the theore- 
tical prediction for the core section with the cylindrical 
pores to bring theoretical and experimental results 
even closer. 

Thermal conductivity measurements normal to the 
above cylindrical pores in A1203 gave b values of 
~3.5, i.e. only slightly higher than the model value of 
~3 [-6, 15] (Fig. 9). The modest discrepancy is partly 

attributed to the nature of the specimens. The large 
size of the pores (giving only 16 of the largest cylin- 
drical pores across some specimens) may be a factor 
but, the peripheral slabs having only normal sintering 
porosity are again important. For measurement per- 
pendicular to the cylindrical pores there are two slabs 
of nominal sintered porosity in series, and two in para- 
llel, with thermal conduction normal to the cylindrical 
pores, Both sets of slabs would increase the thermal 
conductivity some due to their lower porosity, thus 
further increasing moded-data agreement. 

A study of the compressive strength of sintered 
A120 3 with cylindrical pores aligned parallel to the 
stressing direction, reinforces the above thermal con- 
ductivity tests and the overall modelling. Thus, Weiss 
et  al.'s [33] data (Fig. 10) show the compressive 
strength initially dropping more rapidly as the num- 
ber of axial cylindrical pores (~0.25 cm diameter) in- 
creases from 0 to 7, then fairly closely following the 
cylindrical pore model when 9 or more such pores are 
present. This initially more rapid decrease shows that 
a few larger pores are not sufficient to represent the 
model for such pores, i.e. supporting the above homo- 
geneity issue (which is likely to be more serious for 
measurements perpendicular to the cylindrical pores). 
In fact, the initial slope (b value) of ~3.7 is a reason- 
able average of b values for axial cylindrical pores 
(b ~1.3) and pores between packed particles (b ~5-9, 
mostly 5-7). The trend for nine or more cylindrical 
pores decreases somewhat more rapidly than the ideal 
cylindrical pore model consistent with the presence of 
some residual porosity from sintering (~8%),  and 
hence is in good agreement with the model. 

Rutman et  al. [-34] measured electrical conductivity 
of sintered cubic ZrO2 (+ 13% CaO) made with 
naphthalene additions giving approximate spherical 
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Figure 10 Relative compressive strength of A1203 with axial cylin- 
drical holes. Data of Weiss et al. [33] at 22~ for AlzO3 bodies 
sintered with 0-49 axial holes, ~2.5mm diameter in parts 
~2 cmx 2 cm x 5 cm. Rectangular bodies tested parallel to the 

aligned cylindrical holes. Note the change in slope going from 0-7 
holes, With the curve for I> 7 holes shown close to the theoretically 
predicted trend (upper curves). 

porosity. Their b values for conductivity in the 
800-1200~ range are ~3, in good agreement with 
expectations. Similarly, thermal conductivity data for 
various sedimentary rocks and fire bricks 1-35-39] 
generally falls between the models for spherical and 
cylindrical pores (aligned with the conductivity direc- 
tion, Fig. 11). The sedimentary rock data are expected 
to fall in this range because much of its porosity would 
be expected to be approximately spherical (e.g. due to 
air bubbles) and especially laminar (due to subsequent 
compaction of the lameller deposits giving laminar 
pores or porous areas) thus giving similar results to 
aligned, cylindrical pores. Similarly, fire bricks have 
much of their porosity as approximately spherical (or 
ore angular, e.g. approximately cubic pores from use 
of sawdust; cubic pores giving similar results as spheri- 
cal pores [10, 15] thus generally following trends for 
spherical pores. 

3.2. Bodies of solid or hollow spherical 
particles 

Coronel e t  al. [40], measured Young's modulus, E, 
flexure strength, o, and fracture toughness, K~c, (using 
the notched beam technique) of bodies sintered from 
glass beads (averaging 100 gm diameter). Their E re- 
sults (Fig. 12) show reasonable agreement with 
those expected for cubic (hence also random) stacking 
of uniform spheres. Less agreement is found, respec- 
tively, for cy and Klc. Heterogeneities and their 
combination with the relatively large bead diameters 
are seen as major factors in these variations (e.g. as 
indicated by data range bars, Fig. 12). Orienta- 
t ion-anisotropy effects are probably also significant, 
especially for K~c as discussed later, along with vari- 
ations in flaw shape. McKinney and Rice [-41] showed 
an approximate two-fold increase in K~c values cal- 
culated from notch beam tests of dense glass bars due 
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to flaws at the base of the notch being approximately 
semi-circular instead of highly elongated, i.e. ap- 
proaching the slit crack assumed in notch beam calcu- 
lations. Solid contiguity occurring only via necks be- 
tween glass beads could readily limit machining crack 



elongation at the base of the notch, making such ~ 1.0 
variations in flaw shape more common in such porous _.e 
glass bodies. 

"5 
Bodies made by sol-gel processing are often closely 

approximated by stacking of spheres, e.g. as shown by 
the work of Ashkin et al. [42, 43]. Their E/Eo data 
(Fig. 13) first closely follows that for cubic packed 
spherical particles (similar to that for random pack- 
ing) up to P ~30%, then approaches and crosses the 
curve for cubic stacking of spherical pores when the ~ 0.1 
spherical particle stacking becomes very open (i.e. due _= 
to chains of spherical particles at P >~ 50%), thus in- "g 
troducing a second population of pores, much greater E 
than the particles. Thus, much of the higher level of = 
porosity would be made up of approximately spheri- :p. 
cal, then cylindrical pores. Their (biaxial flexure) �9 > 
strength data show a similar trend, and agree quite '~ 
well with earlier, more limited data of Park and Hench ~ ~176 n.- 

[44]. (Ashkin et al. show a rise in v with increasing P, 
a trend not predicted by any model, which may often 
indicate heterogeneity in the porosity, [6] but the rise 
is limited.) Recent data on (uniaxial) flexural strengths 
of foamed gels by Fujiu et at. [45] also agree quite well 
with Ashkin et al. Finally, Woignier and Phalippou's 
[46] strengths (measured by both flexural and dia- 
metrical compression tests) of SiO2 aerogels (as well as 
dense SiO2 for reference) follow a similar, but higher 15 
trend. Their relative strengths (i.e. cr/~o) for both tests --:.._ 
agree well with each other and generally fall between '~ 6. : 
the models of spherical and cylindrical pores (Fig. 13). g 10 

O As might be expected, the data are closer to the cylin- -- 
drical (cubic cell) model at the higher porosities, and ~ 8 

== closer to the spherical pore model at the lower poro- 
sities investigated. 

6 
Ali et  al. [47], also sintered powdered glass, but 

with glass microballoons (~30-300gmdiameter)  x 
which made up the bulk of the resultant 0%-38% " 
porosity. Their strength results again generally follow 4 
the trend predicted for spherical pores in cubes (i.e. 
b ~3, Fig. 14). Residual porosity in the sintered matrix 
is probably a major source of variations. A more 
extensive set of data for bodies made of glass balloons 
is that of Green and Hoagland [48, 49]. They used 
sodium borosilicate balloons sieved to give a limited 
size range (36 _+ 11 btm) that were then sintered to 
various degrees with limited sphere damage, giving 
~76% to ~92% porosity (determined by complete 

densification of balloon bodies). The lowest density, of 
course, was approximately the green density, which 
they determined to represent the spheres occupying 
~52% of the volume (the remaining porosity was due 

to the pores inside the spheres). Their data for relative 
Young's modulus (E, = the modulus of the solid, i.e. 
at P = 0, determined on specimens of fully densified 
balloons), flexural strength and fracture toughness are 
shown, along with three model curves, in Fig. 15. The 
first curve is for the function 1 -  e -~'(~-e) (with 
b ' =  0.5) based on an earlier minimum solid load- 
bearing model [15] (derived by interchanging the 
solid and pore phase in the original minimum solid 
area model based on sintering spherical particles). 
This function has the right shape; its applicability can 
be improved by accounting for the green density, i.e. 
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Figure 13 Plot of absolute or relative mechanical properties versus 
porosity, P, for bodies made from partially sintered gels [42, 43]. 
These bodies represent combinations of stacked sintering particles 
and bubbles and are generally consistent with such combined mod- 
els. (x) o [44], (�9 crfl~of [46], (A) o'adC~od~ [46]. 
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Figure 14 Flexure strength versus porosity, P, for sintered glass 
with balloons [47]. Compare slope, b ~2.8 to b ~3 for cubic stack- 
ing (Fig. 4) because random packing and cubic packing give very 
similar porosity-solid area curves and b values. 

percolation limit, thus possibly being a useful com- 
ponent of more comprehensive modelling as noted 
earlier. 

The other two model curves shown in Fig. 15 were 
derived by combining two minimum load-bearing 
models (for Young's modulus). One model used was 
based on the bond area between sintering spheres after 
that originally derived by Knudsen. Based on a green 
density of ~52%, the closest (cubic) sphere stacking 
having a limiting green density of ~48% was chosen 
to account for porosity between the balloons (spheres). 
The second model used was for the minimum solid 
area of spherical bubbles in a solid, e.g. after Eudier 
[13], and Rice and Freiman [6, 16], to account for the 
pores within the balloons. Combination of the two 
porosities and their effects was made via Equations 
1 and 2, plotted for the sum of the two porosities, i.e. as 
suggested earlier by Rice [50]. As can be seen (Fig. 15), 
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Figure 15 Plot of mechanical properties versus porosity, P, for 
partially sintered bodies of glass balloons after Green and Hoagland 
[48, 49] (x) E/E~, ([~) cyf, (O) Klc, and comparison to minimum 
solid area models for stacked bubbles. E = Young's modulus at any 
P (subscripts s = solid, i = values due to porosity inside of balloons, 
and o = values due to porosity outside, i.e. between, balloon). Note 
the lower bound [2EiEo/(Ei + Eo) ] which would be similar to the 
upper bound (Ei Jr- Eo). Also, the initial slope, b = 3 which reflects 
the approximate values for stacked spherical pores, and the fitting 
(---) of two foam cell models [17, 25] to these bodies by Green 
[24]. 

the combined model fits the data reasonably well. The 
limited differences in absolute fit with the data must be 
due in substantial part to the difference in model 
versus actual green densities (48% versus 52%), as 
well as variability and imperfections in balloon size, 
shape and quality (e.g. broken balloons) and resultant 
uncertainties in the actual amount of each type of 
porosity. Also shown in Fig. 15 are the fitting by 
Green [24] of two foam cell models [17, 25] to their 
relative Young's modulus data, E/E,. They noted that 
the data at higher P dropped below these models due 
to their properties being dominated by the small sin- 
tered contacts (i.e. their minimum solid area), and 
derived a model for such bodies accounting for these 
small contact effects [48]. 

Krasulin et al. [51] partially sintered bodies of 
various (sieved) size fractions of (6 wt%) CaO-stabi- 
lized ZrOz balloons from 20-200 gm in diameter�9 
While the characterization of their balloons and 
resultant bodies is not detailed enough to allow signif- 
icant quantitative evaluation, their data agree quali- 
tatively and semi-quantitatively with the model. Thus, 
the decrease of various mechanical properties with 
increasing average balloon diameter is consistent in 
trend and approximate magnitude with predictions of 
the model, i.e. properties dropping by ~40% from the 
smaller to the larger balloon size. More definitive 
results from use of polycrystalline ceramic balloons is 
the work of Trostel [52]. He measured crushing 
strengths of A1203 and ZrO2 bodies made by mixing 
and sintering powders with 0% up to ~75 vo l% 
balloons (~2500 gm diameter). This broad range of 
hollowspheres provides a good opportunity to apply 

talline balloons by Trostel 1-49], (x) ZrO2, (El) A1203. Note the 
transition from cubic (approximately random) packing of solid 
spherical particle models to various mixtures of spherical voids (i.e. 
inside the balloons) to the limit of balloon addition (~75%) 

the preferred method of combination (Fig. 4). His data 
fall in the range for compacted spherical particles at 
lower P, i.e. zero or limited balloon content closest to 
simple cubic (hence also approximately random) pow- 
der packing (Fig. 16). Progressive addition of balloons 
results in maintaining the initial slopes (~5.1 for 
A1203 and ~6.4 for ZrO2) well beyond the decrease 
of such solid particle packing models toward Pc. The 
agreement of the mixed powder-balloon bodies with 
the rule of mixtures curves from the cubic (approxim- 
ately random) solid sphere and spherical void packing 
models support the preferred model combination ap- 
proach discussed earlier. 

4 .  D i s c u s s i o n  

4.1.  M o d e l - d a t a  c o m p a r i s o n  
Comparison of literature data for bodies having pores 
approaching those readily modellable by minimum 
solid area models are consistent with the appropriate 
models. This is true not only for Young's, shear, or 
bulk moduli, but also for tensile (or flexure) and com- 
pressive (or crushing) strength, as well as thermal and 
electrical conductivities. The consistency for the 
limited number of cases for strengths and thermal and 
electrical conductivity as well as for polymer bodies of 
the paper is substantially reinforced by similar but 
more extensive consistency for these properties, as is 
the consistency of these with elastic moduli for 
a broader range of materials, including metals [11]. 
Both the overall consistency for this range of proper- 
ties and materials provides good support for the 
minimum solid area concept. Consistency is also 
shown for the cases of mixed porosity and hence for 
the combination of porosities which is also further 
supported by the companion paper [11]. 

The term consistency used above is appropriate for 
two basic reasons�9 First, there are uncertainties in any 
modelling approach, such as the porosity simplifica- 
tions and generalizations of micromechanics models 
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Figure 17 Illustration of variations in idealized fracture paths for various stackings of sintering solid spheres. Both (a) and (b) show, 
respectively, fracture paths for cubic and orthorhombic stackings stressed in the (100),  and (c) and (d) show such paths for these two 
respective stackings stressed in the (110).  

noted earlier. On the other hand, the minimum solid 
area models, while offering the widest range of poro- 
sity consideration, have the uncertainty of how domi- 
nant the minimum solid area is for various properties. 
Thus the use and possible validity of models can only 
be judged by extensive testing against property- 
porosity data. However, this poses the second basic 
problem; namely, the extent and quality of the data. 
No data exist (and would be very difficult to obtain) 
which very closely approach any available model. 
Further, while it is commonly assumed that porosity is 
homogeneous, where evaluations of this have been 
made they have shown substantial property vari- 
ations, and hence implied inhomogeneity [6, 10]. 
These problems are compounded by the difficulties of 
detailed porosity characterization, and even worse, the 
common lack of even rudimentary characterization 
beyond measuring an average P. This and the com- 
panion paper [11] are the only known attempts to 
compare data for various pore types on any scale. 
Thus, micromechanics model evaluations have used 
far fewer case evaluations for support, and neglected 
the actual porosity character [1-7]. 

The issue of applying minimum solid area (or other) 
models to strength and fracture toughness needs to be 
further addressed. The most significant issue for ten- 
sile strength is the fact that pores may affect the flaw 
shape and especially the flaw size. However, as re- 
cently discussed [53], this occurs only in a fraction of 

the theoretical cases and is not observed to be a com- 
mon factor experimentally [6, 53]. In most cases, flaws 
are much larger than the pores so the porosity de- 
pendence of strength, c~, is determined by 
K~c = (2E?) ~/2 (where ? is the fracture surface energy 
and E is Young's modulus). However, the P depend- 
ence of v and E should be similar because theoretically 
the major determinant of y is E [54]. The 
similarity of the P dependence of ? and E is frequently 
borne out [6, 16, 55]. However, there are also devi- 
ations, which are attributed to interactions of cracks, 
especially larger ones, with the pore structures as 
sketched in Figs 17 and 18 (discussed later). Bridging, 
or other larger scale crack-pore interactions, may 
result, giving these P deviations. However, the cy P 
behaviour is much closer to E-P  behaviour, showing 
much less, or no, manifestation of K~c P deviations 
[56]. This is also shown in this study, i.e. Figs 12 and 
15, which also show similar E-P and cy P trends, 
which thus further supports use of the minimum solid 
area models for ~ [53]. 

Compressive failure entails propagation of cracks in 
local tensile stresses, hence, should have substantial 
similarity to cy-P behaviour as observed in this and 
other studies. However, compressive failure typically 
occurs by progressive, cumulativelinkage of such lo- 
cal tensile cracks. There thus may be added opportu- 
nity for pore shape to have added effect on failure via 
effects on possible additional: cracks generated at 

1115 



( 
( 
( 
( 

) 
) . _  Reoresentative ( 

fractu re 
surface 

(a) 

) 
) 
) 
) 

Representative 
(c) fracture surface 

(b) 

) 
) 

( 

Representative 
( d ) fracture path 

Figure 18 Illustration of variations in idealized fracture paths for various stackings ofcetls with bubbles in them. (a) and (b) show such paths, 
respectively, for cubes in orthorhombic stackings loaded in the (100}. (c) and (d) show such paths for these respective stackings loaded in the 
(110}. 

pores as stresses increase beyond those where earlier 
cracks formed but did not cause failure. 

However, the greatest need for improved model- 
data comparison in much more detailed characteriza- 
tion of the bodies at various stages of densification. As 
discussed further elsewhere [-6, 10, 11], the most criti- 
cal needs are to define the porosity better at which 
properties go to zero Po, the contiguity of the solid 
phase (especially for bonded particles), and the homo- 
geneity of the porosity. For bodies of sintered bal- 
loons, better characterization of the variations in 
balloon size and wall thickness are needed. 

4.2. F u r t h e r  m o d e l  d e v e l o p m e n t  
This paper and its companion [11] show minimum 
solid area models are viable for dealing with many 
property-porosity situations. Their particular 
strength is their ability to address a variety of pore 
structures. However, there are three areas for further 
development, the first of which is further extension of 
the porosity range covered. Combinations of existing 
models based on uniform size and shape pores or 
particles have proved useful for handling real bodies. 
However, direct modelling of non-uniform size and 
shape pores or particles, e.g. using modern computa- 
tional abilities, should be explored. There are also 
special porosities of importance for which direct mod- 
elling should be valuable. Varying pore structures 
obtained by leaching phase-separated bodies is one set 

of examples and preferential grain-boundary pores is 
another. Two other important categories are pores in 
composites (where interfacial pores between the 
matrix and dispersed phase are an important example) 
and pores in chemically bonded materials (e.g. plasters 
and cementitious materials). 

The existing models can also be improved in two 
regards. The first is checking their isotropy. Minimum 
solid area models should not introduce any anisot- 
ropy or other non-uniformity not inherent in the basic 
material microstructure modelled. Use of spherical 
particles or pores in the three basic close packings of 
initially cubic cells (Figs 1 and 2) appears to result in 
isotropy, e.g. as suggested by the analogy with the 
corresponding cubic crystal structures based on iden- 
tical stackings of atoms. Certainly isotropy results 
for all these models as P --* 0. However, isotropy has 
apparently not been considered before; for example, 
Knudsen's original calculations were of bond areas for 
three different sphere stackings (Fig. 4), but only for 
one direction, essentially (100) ,  for each of these 
stackings [12]. 

In general, bond areas normal to the reference (e.g. 
stress, flux, etc.) direction play a major roll in support- 
ing load, heat conduction, etc. Areas at intermediate 
angles play an intermediate role, and areas parallel to 
such direction a lesser role. Table I lists these three 
area categories for the three particle stackings and the 
three principal directions (100},  (110},  and (111}.  
The geometry for making such analysis quantitative 
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T A B  LE I Qualitative summary  of the angular  variations for vari- 
ous stackings of bonded spheres. Number  of bond areas perpen- 
dicular (I), parallel (II), or at intermediate angles (IA) to the refer- 
ence axis. 

Sphere stacking ( 1 0 0 5  (1 105 f l  1 15 

I IA II I IA ~ II I IA a II 

C u b i c ( C a = 6 )  2 0 4 0 6 0 0 4 2 
Orthorhombic  
(C~ = 8) 0 4 4 0 4 4 0 8 0 
Rhombic  
(C ~ = 12) 0 8 4 0 8 4 0 12 0 

"Intermediate angles cx, i.e. 0 ~ < c~ < 90 ~ 

is relatively simple for simple cubic stacking. The 
projection of each bond area normal to the reference 
direction is an ellipse of area ~zab, where b = 
a cos (90 - (3) = a sin 0, and 0 = the angle between the 
stress or flux direction and the plane of the bond area. 
The projected separation between like-oriented bond 
areas is 

L' L' 
L - - (7) 

cos(90 - O) sin O 

where L is the actual separation in the plane of the 
bond, L' the separation projection normal to the flux 
(stress) direction, and 0 is the angle of the reference 
(e.g. flux) direction relative to the plane of the bond 
area. The net bonding area, A, normal to the stress (or 
flux) direction is 

2r~a2 2 
A = ~T - ( s i n  qbt + sin2~2 + sin2~3) (8) 

where ~ ,  (i = 1, 2, 3), are the angles of the reference 
direction with the x, y, and z axes. 

For the (100) ,  ( 110 ) ,  and ( 1 1 1 )  stress (flux) 
directions for cubic stacking, Equation 8 always re- 
duces to 2x(aZ/L), indicating isotropy. (The same re- 
sult is obtained for the minimum solid areas for cubic 
stacking of bubbles.) While increasing, the packing 
density (i.e. Cn) for the other stackings increases the 
number of bonds, theangles between these and the 
reference direction decrease, again indicating a nor- 
malizing, hence isotropy trend, but more work is 
clearly needed. 

The above observations indicating approximate 
isotropy are most pertinent to properties determined 
by non-destructive means, e.g. elastic, conductive, etc., 
properties. Properties determined by destructive 
means, i.e. fracture, are likely to show some perturba- 
tions or anisotropy because of fracture paths being 
biased toward the weakest areas (i.e. of the least solid 
bonding). Thus, some mixed-mode fracture on a local 
scale would be involved for some sphere stackings and 
stress directions, e.g. Fig. 17 as previously noted by 
Rice and Freeman [16]. This is most likely to manifest 
itself for bodies of limited sintering, i.e. higher porosity 
and for larger versus smaller cracks. This is consistent 
with Km data of Coronel et al. [-40] showing greater 
deviation less than expected porosity decreases than 
for (x and this, in turn, less than E (Fig. 11). 

Models based on stacking of bubbles, fully or par- 
tially, surrounded by solids have similarly not been 
thoroughly considered for the uniformity standpoint 
of essentially (1 0 0) stress or flux direction. While for 
foams, surface tension determines the structure, so the 
idealized structures of Fig. 18, especially of Fig. 18a 
and c, are not as realistic for their high porosities; they 
provide a starting point for illustrative purposes. 
Some mixed-mode failure on a local scale should 
occur in fracture of bodies of stacked bubbles (Fig. 18), 
introducing some anisotropy, mainly for more porous 
systems, especially if bubbles are greatly elongated 
along one direction. 

The above issues associated with fracture illustrate 
the third area for further model development; namely 
better defining the applicability of these (and other') 
models. Minimum solid area models have broad ap- 
plicability, for example to many mechanical properties 
and thermal and electrical conductivities. However, 
their applicability is not universal; for example, heat 
capacity and dielectric constant are primarily, if not 
exclusively, determined by average rather than min- 
imum solid area. In some cases, it may be appropriate 
to modify minimum solid area models to account for 
other effects such as crushing in some wear tests [57]. 
In other cases it may be more appropriate to develop 
or apply other models, and to define which approach 
is most appropriate as discussed further elsewhere 
El13. 

5.  C o n c l u s i o n  
The applicability of existing models for the porosity 
dependence of physical properties determined mainly 
by local flux or stress and hence minimum solid bond 
(i.e. load bearing) area have been evaluated in two 
respects. First, the basic models are shown to agree 
with actual data for materials with porosity approxi- 
mating the idealized pore structures of available mod- 
els. Second, methods of combining porosity, thus 
covering a broader range of structures and a more 
complete range of porosity (P = 0% to nearly 100%), 
are discussed and shown to extend the applicability of 
the models. While direct combination of substantially 
differing property values from different porosities can 
be useful, further development is needed. However, 
different theoretical models can be combined where 
property values are similar, to yield combined model 
curves. It is shown that such combinations lead to 
approximate linear interpolations of the initial slopes 
and the value of the percolation limit, Pc, on a log 
property-porosity, P, plot. It is also shown that such 
combined models are in reasonable agreement with 
data for such combined porosities. 
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